
Experiments in the Use of Game Technology for
Pre-Visualization

Michael Nitsche
Georgia Institute of Technology

686 Cherry Str.
Atlanta, GA 30332-0165

+1 404 8947000
michael.nitsche@lcc.gatech.edu

ABSTRACT
This overview paper outlines the value of real-time 3D engines
for pre-visualization. Pre-visualization is a standard tool during
pre-production of many modern film productions. First, the
parallels between the two increasingly digitized technologies are
discussed. Second, the paper outlines the special needs and
problems posed by pre-visualization. It argues that animation
control and camera control are the two main areas that need to be
addressed. Finally, it presents a range of experiments that provide
different practical approaches to these two core questions and
utilize available game technology. The approach of these tests
was to keep the rendering real-time – “liquid” – as long as
possible. This follows original machinima-like production
pipelines. Ultimately, the here presented prototypes illustrate the
value of real-time game engines for pre-visualization as well as
still prevailing limitations.

Categories and Subject Descriptors
J.5 [Arts and Humanities]: Fine arts

General Terms
Design, Experimentation

Keywords
Real-time 3D, pre-visualization, game, machinima, film

1. INTRODUCTION

Like film and television, video games use moving images and
sound as their dominant forms of expression. However, unlike
more linear media formats, games allow for interactive access and
manipulation of the events themselves as they are presented.
Visualization in film is exclusively applied to tell – in a game
world it is geared to support the play. In-between these two
approaches one can find media formats that involve both, instant
interactive access and a focus on story-telling. These
combinations of “play” and “tell” in real-time environments
opened up new game-based production methods for Computer

Generated Imagery (CGI). In this setup players not only control
the performing virtual hero but they also become storytellers and
producers that use game engines to stage their artistic visions.
Game worlds become virtual sound stages for a new kind of
movie production. This new production paradigm has led to the
growing field of machinima, which has been defined as “animated
filmmaking within a real-time virtual 3D environment.” [11]
There are a number of new features that become available through
such a shift in the production but in this essay we will concentrate
on one specific sub category in this emerging hybrid form of
game and film media: the value of video games for pre-
visualization.
Pre-visualization is a wide-spread pre-production technique used
in many film productions to plan camera work before the actual
shoot. Planning during pre-production is important to optimize the
excessively more expensive production stage. It allows a
preparation of often very complicated shots that have to be clear
not only to the director but also to the director of cinematography,
the set designer, the lighting crew, and other members of the film
team including the special effects and visual effects units. Thanks
to continuous improvements of graphics but also to ever-more
accessible and refined game editors, video games have become a
valuable new tool for pre-visualization. The essay will outline
these values of games for pre-visualization and present a number
of projects realized at the Digital World & Image Group at
Georgia Tech that deal with still prevalent limitations of game
platforms as tool for this special task.

1.1 Related Work
A range of tools originally designed for high end graphics are
used for digital pre-visualization: from Maya and Motionbuilder,
to 3D Studio Max, Softimage XSI, and Poser. In addition, a
number of packages have emerged that are marketed in part for
pre-visualization and in part for machinima production. These
include Poser, Antics3D, iClone, and Moviestorm. Each of these
programs has own strengths and weaknesses but all of them allow
for some kind of staging of events on virtual sets as well as a
definition of virtual camera angles toward the resulting scenes.
Neither of them allows the user to play the virtual character.
Instead, they mix scripting tools for event staging with the
concepts of the aforementioned animation packages including a
final rendering of the constructed movie that is not necessarily
real-time. This essay will concentrate on the real-time pre-
visualization generated in a play environment. Thanks to the
flexible visualization and the immediate access to the event space,
game technology was envisioned as early as 1986 to help CGI
film production. Smith’s The Colony, an extremely early first-
person-shooter title, attracted the attention of Cameron during the
pre-production phase of The Abyss (USA 1989) [8] – even though

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FuturePlay 2008, November 3-5, 2008, Toronto, Ontario, Canada.
Copyright 2008 ACM 978-1-60558-218-4…$5.00.

160

its practical us remains unclear. Today, game engines have been
used in actual pre-visualization stages, such as a modification of
the Unreal engine for pre-visualization work on Spielberg’s A.I.
(2001) [10] or the use of flight simulators for Cohen’s Stealth
(2005). The question remains whether today’s tools can be
adjusted to support game engine use in pre-visualization on a
regular basis. In addition the question is whether these tools will
be useful for movies that might be less driven by futuristic
technology and thus demand more traditional camera and actor
control.

Early on, the academic community recognized the value of virtual
environments for such a new real-time and virtual-based
production. Based on earlier work done by Zeltzer/ Drucker/
Galyean [2], Higgins [4] developed the prototype for a 3D/ video
pre-visualization tool that included camera and editing controls in
a composited image output. Modern versions of this approach
often use Augmented Reality interfaces like Ichikari et al. did in
their Mr. Pre-Viz project [5]. Augmented Reality projects like
these still include live video recording as integral part of the
image unlike game visualizations that most often concentrate on
the representation of the virtual 3D world alone.

A growing number of these real-time game engines started to
provide own editors, scripting tools, and exporters for content.
These tools made them useful for pre-visualization experiments in
their own right. The various installments of the Matinee tool and
the Kismet environment for Epic’s Unreal engine and game
modifications such as Gary’s mod for Valve’s Source engine
directly plug into features provided by the commercial game and
provide increasingly sophisticated options for cinematic film
execution in game worlds. Kirschner’s MovieSandBox tool for the
Unreal engine provides an astonishing package for machinima
production that covers many crucial sections including character
generation and animation control.

A number of research projects looked into the use of existing
game engines for the creation and planning of cinematic
sequences. One of the new options available in these real-time 3D
engines is the use of Artificial Intelligence (AI) techniques to
suggest appropriate camera angles for certain conditions in real-
time. Elson/ Riedl [3] suggest CamBot, a real-time camera AI to
quickly create visualizations based on a database of standardized
shots. It was not aimed at pre-visualization tasks but its approach
to first seek out blocking issues and then apply a possible camera
perspective to a given scene in real-time does address typical pre-
visualization problems. Jhala et al. [7] concentrate more on the
problem of pre-visualization itself and their Longboard project
provides a 2D interface for planning and adjustment of 3D scenes
processed in the Unreal engine. Jhala’s and Riedl’s work might
be the most applicable to the below presented projects as they
specifically include machinima and – in the case of Jhala – also
pre-visualization in their design.

1.2 Game Worlds as Virtual Stages
The use of game engines for cinematic production is based on a
fundamental paradigm shift. Machinima producers use the game
world not as a challenge to overcome but as a stage to deliver a
form of expression. This describes the transition from pursuing a
defined goal set by the game (e.g. to beat the high score) to a self-
defined goal of artistic expression (e.g. perform a certain dramatic
event). Although this is a shift in the basic approach of users to

virtual worlds, content in the form of sets, characters, sounds,
animations, and visualizations floats freely from non-linear games
to linear video/ film and back. Kinder has termed the resulting
intermedia network an entertainment supersystem [9] where
boundaries of media are constantly crossed in the traversal of
elements from media to media. A prime example for such a
supersystem is the development of the Star Wars franchise [6]
from film to most other media. Machinima is one platform that
thrives in these transitions. It builds bridges between film, theater,
game, and performance and is inherently transmedial by
definition [14].

From the earliest days of game-based machinima production to
the current use of recent game engines, machinima artists as well
as game and level designers often blend ideas of film set design
and game world design. The video game Stunt Island (Stephens
and Fortier 1992) allows player to not only perform stunts but
also edit the recordings and design the sets. Playing the game and
making the movie about the play-performance are combined.
More recently The Movies (Molyneux 2005) put the player into
the director’s seat influencing various aspects of film production.
At the same time, many in-game features such as instant replay or
the option of recording a whole game session – so called ‘demo
recording’ – often improved technically and expanded the use of
game worlds as virtual stages.

Machinima artists were actively involved in this blending of
media, for example in the form of custom built game
environments that often mirror TV studio setups or film sets. The
ILL Clan’s Larry and Lenny Lumberjack (2003-2005) and
Tra5hTa1k (2005-) machinima series are performed in
customized game environments that are modeled after traditional
TV studios. Massively Multiplayer Online game worlds from
Activeworlds to Second Life include areas that are recreations of
film sets designed to replicate not the diegetic world of the film
but that of the film production. The question, then, is not whether
the merger of film production and game worlds is happening but
how to realize the emerging possibilities. This essay will
concentrate on the area of pre-visualization as one example for
this development.

2. DEVELOPING TOOLS FOR GAME-
BASED PRE-VISUALIZATION
Although the shift to virtual stages opens up a lot of options for
game technology to support cinematic work, this does not
necessarily mean that it fits the needs and special conditions of
pre-visualization in commercial film production. These have often
developed from historic practices and present own technical
challenges that have to be met by the game system.

2.1 Demands of Pre-Visualization
The practice of pre-visualization can be traced back to the much
older tradition of storyboarding. Both provide means to plan a
certain shot or a whole sequence during the pre-production of a
movie and help to develop the visual story. Over time, the
storyboards were filmed, animations were added, and occasional
model shots or other footage included. This resulted in countless
forms of so-called “animatics.” To this day animatics remain a
key pre-production technique and serve often as basis for more
detailed pre-visualization. However, pre-visualization itself has
become increasingly digital and the more accessible computer

161

graphics became, the more they began to replace these more
traditional tools in the industry [1]. Production studios like the
Pixel Liberation Front have specialized in this niche market and
continue to blur the borderlines of the cinematic media.

The main task for all of these tools is to assist the director and the
production team in the planning of the specific film shoots. Other
tools provide comparable help: e.g. concept art helps to define the
graphical look, color palettes, and artistic style. Pre-visualization
helps to plan the setup of shots, movements of the camera, avoid
blocking problems, and inform different members of the
production team about specifics of the individual shot. Although
pre-visualization is often done in fast and low quality renderings,
it has to be precise enough to provide the necessary information
about framing, movement, and staging of the scene at hand.
Because pre-visualization is not only a tool for technical planning
but also one that supports communication between different
members of the production team, it has to be expressive and at the
same time flexible enough to allow simple changes. Is should
allow for visual experiments which itself should be easy to
control and implement.

2.2 Problem and Parallels
Manovich discussed specifics of the digital visual media and his
defining principles (numerical transcoding, modularity,
automation, variability, cultural transcoding) apply to CGI film as
well as to video games. Conceptually both, games and digital
films are based on the idea of the computer as ‘media processor.’
[12] Technically though, the difference between a multi-purpose
Central Processing Unit (CPU) at work in traditional CGI render
farms and specialized Graphics Processing Units (GPU) used on
graphic cards usually needed for cutting edge real-time rendering
in game consoles and home PCs often still remain. It is up to
developments like Gelato, programmable GPUs (e.g. using
NVidia’s Cg) and graphic card hardware improvements like SLI
to shrink these differences and improve a direct integration of
real-time into high-end CGI. The shared concept of a digital
production remains. It is no surprise then that video games and
film production increasingly share comparable production
pipelines. For example, Industrial Light and Magic’s (ILM)
proprietary production pipeline Zeno is connected to their real-
time tool Zed. A continuation of this gradual merger seems only
too logical.

However, in order to develop game-based pre-visualization tools
one has to be aware of issues of compatibility and technical
differences. Compared to the typical workflow in a CGI movie
production, games still differ in a number of important ways.
Even though engines have become more powerful a clear
difference in render quality remains as any use of real-time
technology always includes a lower level of detail, simplified
lighting setups, simpler 3D models, simpler skeleton and rigging
conditions, among others. Although none of these differences
plays too much into visual quality of pre-visualization these
differences include mayor discrepancies between the systems.
Two fundamental differences are found in the animation and
camera control.

2.2.1 Animation Control
A classic CGI animator can re-use animation circles, alter them,
or use procedural techniques to change them. However, the main

movements of the central characters are often unique and directly
controlled using the production’s 3D animation package. In video
games the animations are generally pre-produced. Animators
provide them during the game production process – often using
exactly the same 3D package one would use for a CGI movie –
and import them into the game engine. Games can change a given
animation in dependency to collision, physics, or procedural
techniques [15] but direct control over the animation is not
available. Players are usually not allowed to create a new
animation for the given character but they have to use the ones
that were provided by the game.

2.2.2 Camera Control
3D video games can offer extensive virtual camera work but they
have to concentrate these efforts on the playability. Cameras are
not only dramatic narrative devices but also functional viewpoints
into the virtual performance space. This leads to camera control
mechanics that are optimized for gameplay but that are often too
rough for professional standards which need careful adjustment of
framing, focus, and image assembly. Instead of standardized
perspectives, like the ubiquitous First-Person perspective or a
single following camera the tools need to be adjusted to provide
more detailed access to camera control to design and test
individual shots. Position, orientation, focus, field of view might
be all available in next-gen game engines but need to be
accessible through feasible interfaces; means to edit the results in
real-time, and access to the powers of modern game engines need
to be developed and combined to create better control
mechanisms for the virtual camera work.

3. IMPLEMENTATION – PROJECTS
The following projects were experimental approaches to cover
different needs for more expressive control in real-time virtual
environments. They were conducted over the last years to
investigate machinima and real-time image control. The short
descriptions of our work below is not meant to provide full
technical specifications (some of the work has been published in
greater detail at other venues) but to outline a range of tools that
each address different problems of pre-visualization and try to
solve them in an operating prototype.

3.1 Approach: Stay Liquid
Between the real-time game controls and the traditional high-end
content creation packages a spectrum opens up. On the one hand
we might identify ever more sophisticated tools provided by real-
time game engines that often miss some basic tools for detailed
control or creation; on the other side one might envision a
plethora of 3D modeling and animation packages of varying
complexity and limited real-time capabilities. Our own approach
at the Digital World and Image Group at Georgia Tech follows
principles of early machinima production. It is driven by the
concept to keep the presentation of the dramatic scene real-time
(like in a game engine) while gradually improving the interactive
access for any artist (as usually optimized by high end packages).
In that way, we hope to provide flexibility and expression.

At the same time, we acknowledge that different tasks during the
creative purpose might need their own approaches. While a pre-
visualization system might need to deal with camera, light, stage
design, and animation control – these specific tasks might not
necessarily be answered by a single input system. A useful

162

camera control and AI system conceptually differs from a useful
animation system and might need its own solution. We do not
expect to solve all challenges immediately in a single tool and
instead aim to investigate the various problems individually in the
hope to learn more about them and attempt for a more holistic
solution at a later stage.

However, we followed one principle concept, namely to keep the
format of the real-time rendered image as long as possible,
keeping the content “liquid” as long as possible into the
production process to allow for maximum flexibility in every
stage. It is the notion of the technically real-time rendered and
therefore still flexible image that opened up new production (and
possibly also new delivery) methods. Thus, we argue that any
system should try to continuously push this option as far as
possible and not succumb to a single render too early. In addition,
all of the following projects utilize consumer level hard- and
software to remain accessible for machinima production and stay
mobile and easy to use.

The New User Camera Control Interface (NUCCI) project [16]
offered an early test of possible player control of the camera
work. The project re-staged parts of Fincher’s Panic Room (2002)
in a real-time 3D game environment. All animations were
reproductions of the actual movements of the characters in the
film scene and fixed. However, the camera offered two options:
either players could follow the carefully re-imagined scene in the
viewpoints chosen by Fincher for the final movie; or they could
interrupt the scene at any moment and create their own camera
viewpoints and visualization strategy.

Fig. 1. NUCCI; free camera control of a cinematic scene in a
virtual world.

NUCCI offered basic camera controls via the keyboard and its
models and animations were directly imported from Maya. It
proved that a free camera can indeed open up a playful interaction
with the dramatic scene and encourages users to experiment with
the material at hand. At the same time we realized that the
interfaces for the camera control were too limited and that an
import of animations from a traditional package (like Maya) does
not utilize the real-time possibilities of the game engine.

Ultimately, the tasks can be broken down into two main
categories: control over the image and control over the action. As
described above, game engines have shown considerable value
especially in the control of the image and specifically camera

control. On the other hand, traditional or non-game-based
packages are more powerful in the control and staging of the
action and especially in the generation of elaborate and unique
animations. Our aim was it to develop different tools to support
both areas but conceptually keep them compatible. That is why all
the experiments outlined below use the same 3D real-time game
engine, namely the Unreal engine as it is in use for the Unreal
Tournament 2004 (Bleszinski and Morris 2004) game. The
question was how feasible real-time engines are to support the
needs for pre-visualization. At the same time, these projects were
undertaken with the area of machinima in mind. That means, that
we actively tried to avoid expensive technology (e.g. we did not
use the motion capture facilities at Georgia Tech) but instead
opted for a game-based and inexpensive approach that continues
the hacker mentality of many machinima pioneers.

3.2 Controlling the Action
Controlling the action performed by the avatar in a virtual
environment is a puppeteering task. Standard video games allow
players to navigate digital avatars and control a limited amount of
pre-fabricated local actions and animations. The problem is that
games usually optimize the animation systems and the pre-
fabricated movements for a selective gameplay experience. They
usually simplify controls to streamline player control toward this
goal. Although it is possible to import new animations into the
Unreal engine and the game itself blends between different
animations during runtime, it does not provide for any control
comparable to a real world puppetry setup. Players cannot easily
control a single arm or a leg to create new poses and animations
that might be necessary for a useful pre-visualization of a certain
scene.

To address this issue the Tangible User Interfaces for 3D Virtual
Environments (TUI3D) project [13] was conducted in
collaboration with Ali Mazalek. The project experimented with
new, tangible interfaces to control single bones and joints in real-
time. The goal was to improve the expressive range available to a
machinima artist as s/he controls the animations of a virtual
character in more detail than originally provided by the Unreal
engine. In a first step we implemented a tangible puppet controller
that directly mapped onto a virtual character and controlled the
movements of the specific virtual puppet via Kirschner’s
MovieSandBox modification of the Unreal engine.

Fig. 2. TUI3D; tangible puppet interface (left) controls the virtual
character in the Unreal engine (right).

Our first puppet was limited to accelerometers and a joystick
input and its design mirrored the appearance of the virtual
character – “Cactus Jack” – that was modeled for the game world.

163

In a next step we developed a more modular interface, the Uniball
that allowed us to connect multiple limbs and sensors to a central
interface and map different sensors to according bones and joint
structures. This modular approach allowed a more abstract design
of the interface and granted more freedom to the way we mapped
the input onto a number of different virtual skeletons. Both
interfaces use a U-HID board that is recognized as a game
controller by the operating system. This way the setup remains
portable and accessible.

Fig. 3. TUI3D; Uniball interface; various limbs with own sensors,
like the one to the right, can be plugged into a central interface
(left) to control different skeleton structures.

We also re-used existing game interfaces, such as the Wii-
controller, the more elusive Gametrak controller, and the Xbox
360 controller as input devices and hooked up the puppeteering
controls to those devices. We presented these interfaces at various
occasions and the concept of virtual puppeteering instead of
game-playing was easily understood and the initial feedback from
the machinima community was very positive.

3.3 Controlling the Image
The second main task for a game-based pre-visualization system
is the control of the camera. On the one hand, we did map camera
controls on simple interfaces, like the Wii controller, but first
feedback from professional producers pointed out that this
approach lacked the necessary precision. Thus, we investigated
ways to provide a more precise camera system that would still
focus on easy access to those cameras to a director/
cinematographer.

3.3.1 Shotbox
Two main camera directives were implemented in the ShotBox
project: focus on the character/ avatar and views defined by the
spatial setup of the virtual set.

The character-focused camera approach generates a range of pre-
defined camera perspectives around any given avatar active in a
Matinee scene in Unreal Tournament 2004. Matinee is the default
tool shipping with the Unreal Editor to set up in-game cut scenes.
Wherever the virtual actor moves – the Shotbox camera network
follows. That means, the director can activate, for example, a pre-
defined close up for any character’s face at any given moment in
the scene. With two button presses the director can activate a
specific camera such as a close up of the face, an over-the-should
shot, a following camera, or a low angle shot for any avatar
directly. At the same time, director and cinematographer are free
to add new cameras to this network, save them, and re-use them
like the other given perspectives. This way we not only allow the

use of an existing camera network but provide the initial means to
generate a new customized one.

Instead of concentrating the camera behavior around the
characters, the second approach allows users to define camera
viewpoints freely on the virtual film set. Was the first version
character-based, then this second approach remains based on the
space of the main stage. These cameras stay fixed and do not
move in dependency to the actors. However, they remain
accessible to the editor and camera operator. To make access to
these perspectives easier, we connected the camera control to a
tablet PC on which users see the various cameras currently
available on the virtual stage. They can, then, use the stylus to
drag these cameras into new positions and rotate them to new
directions. At the same time they can control and create new
cameras in the 3D view on a second computer running a
simultaneous multiplayer session of Unreal Tournament 2004.
This simplifies the camera selections considerably and offers a
working approach to the question of editing in the game world.
Although the tablet PC offered one solution, the question of
editing control of camera work in a real-time 3D environment
remained a mayor challenge.

Fig. 4. ShotBox; control of multiple cameras positioned on the
virtual film set using a 2D tablet PC interface;

3.3.2 PlayViz
While the ShotBox camera controls allow for an editing on the
fly, they do not support the more traditional approach of first
creating a range of cameras and camera behaviors and then edit
between the different perspectives in an offline tool. This was the
task of the PlayViz project. Recording camera positions and
orientations in a parallel running Java application, the PlayViz
project addressed the editing problem in virtual environments.
PlayViz allows users to record different camera behaviors, copy
and paste recorded sections, and cut between those cameras to
create a useful camera sequence.

Fig. 4. PlayViz; recording of a single camera behavior in the
editor window.

164

During this process, the image remains a real-time rendered
perspective into an Unreal game world. Rendering the camera out
not as a linear image but using the Unreal engine and as a live
camera behavior in a virtual environment proved challenging and
the problems faced were mainly due to the inaccessible code of
the underlying game engine. As with the other projects, we
modified and re-used the commercial Unreal game engine but due
to the proprietary nature of this commercial engine, we have
problems optimizing our code and debugging the connection to
the game world as there is no access to the source. That also
meant that Playviz operated independently from the action control
and concentrated entirely on the editing options.

4. CHALLENGES
The various projects were presented to machinima artists as well
as professional film/TV producers and the overall feedback was
very positive. As far as we can assess, there seems to be a great
interest in using game technology for more traditional moving
image productions. Within such an interest, there are a number of
arguments that support the use of machinima for pre-visualization
and the here mentioned experimental prototypes provide some
practical means to improve this development. Camera control in
game worlds seems to be one of the most versatile features of this
technology, for example. However, finding the right interface for
the new features is not particularly easy as they have to respond to
traditional film and TV production methods to remain accessible
instead of confusing. Even more challenging might be the
development of new editing tools that truly embrace the new
features of the game engine.

Keeping the image “liquid” and rendered in real-time is the
revolutionary ability of any game engine in regard to the moving
image production. Keeping the content and image liquid as long
as possible in the production pipeline is core philosophy that
supports machinima as pre-visualization tool. In its real-time
format machinima can provide a new quality to pre-visualization
because it allows for changes in the action and visualization
during runtime and at any stage in the process. The task for the
development of pre-visualization via machinima, then, is to
support the real-time aspects and keep the access to those changes
as simple as possible by continuing the accessibility and
functionality of the underlying game. It is this ability that
differentiates it from commercial 3D modeling packages. Yet,
keeping the image real-time aspect is also the source of the most
technical and conceptual challenges.

5. ACKNOWLEDGMENTS
The research was generously supported by Turner Broadcasting;
Ali Mazalek and her Synlab collaborated on the TUI3D project
which was supported by the GVU center at Georgia Tech; special
thanks has to go to my students Cameron Aubuchon, Carl
Goodson, Mike Lee, Evan Mandel, and Matthias Shapiro, who
worked on the respective projects.

6. REFERENCES
[1] Dickreuter, R. “Interview with Colin Green” (posted April 1st

2007) available at:
http://www.xsibase.com/articles.php?detail=133 <accessed
July 3, 2008>

[2] Drucker, S.M., Tinsley A. G., and Zeltzer, D. 1992. Cinema:
A System for Procedural Camera Movements. Proceedings
of the 1992 Symposium on Interactive 3D Graphics.
Cambridge, MA: ACM Press. 67-70.

[3] Elson, D. K., and Riedl, M. 2007. A Lightweight Intelligent
Virtual Cinematography System for Machinima Production."
In AIIDE '07. Stanford, CA: AAAI.

[4] Higgins, S. 1994. The Moviemaker's Workspace: Towards a
3d Environment for Pre-Visualization. MIT Master thesis.

[5] Ichikari, R., K. Kawano, A. Kimura, F. Shibata, and Tamura,
H. 2006. Mixed Reality Pre-Visualization and Camera-
Work Authoring in Filmmaking." In Mixed and Augmented
Reality, 2006. ISMAR 2006. IEEE/ACM International
Symposium. IEEE. 239-40.

[6] Jenkins, H. 2003. Quentin Tarantino's Star Wars?: Digital
Cinema, Media Convergence and Participatory Culture. in
David Thorburn and Henry Jenkins (eds.) Rethinking Media
Change (Cambridge: MIT Press, 2003). 281-314.

[7] Jhala, A., Rawls, C., Munilla, S. and Young, M.R. 2008.
Longboard: A Sketch Based Intelligent Storyboarding Tool
for Creating Machinima Florida AI Resarch Society
Conference - Special Track on Games and Entertainment,
ACM, Coconut Grove, FL.

[8] Katz, S. D. 2005. “Is Realtime Real? Part 2” (posted April 1st
2005) available at
http://digitalcontentproducer.com/dcc/revfeat/video_realtime
_real_part_2/ <accessed June 12, 2008>

[9] Kinder, M. 1991. Playing With Power in Movies, Television,
and Video Games: From Muppet Babies to Teenage Mutant
Ninja Turtles. Berkeley: University of California Press.

[10] Lehane, S. 2001. “Unrealcity. ILM Creates Artificial Cities
for Artificial Intelligence”. Film and Video. Vol 18 (7).

[11] Marino, P. 2004. 3D Game-Based Filmmaking: The Art of
Machinima, (Scottsdale, AZ: Paraglyph Press)

[12] Manovich, L. 2001. The Language of New Media.
(Cambridge, MA; London: MIT Press)

[13] Mazalek, A. and Nitsche, M. 2007. Tangible Interfaces for
Real-Time 3D Virtual Environments. in: Proceedings of the
International Conference on Advances in Computer
Entertainment Technology ACE 2007 (Salzburg, AU June
13-15, 2007) (New York: ACM Press, 2007), 155-162

[14] Nitsche, M. 2007. “Claiming Its Space: Machinima” in:
Dichtung Digital: New Perspectives on Digital Literature:
Criticism and Analysis ed. by Astrid Ensslin and Alice Bell
(Dec 2007) Vol 37.

[15] Perlin, K. 2004. "Can There Be a Form between a Game and
a Story?" in: First Person: New Media as Story,
Performance, and Game. Ed. by Noah Wardrip-Fruin and Pat
Harrigan, (Cambridge, MA: MIT Press) 12-18.

[16] Shapiro, M. 2006. The Novice User's Camera Control
Interface (NUCCI): A Real-Time Cinematic Solution to
Previsualization. Georgia Institute of Technology M.Sci.
thesis.

165

	futureplay2008_submission_9.pdf
	1. INTRODUCTION
	2. THE GREEK WORLD VIEW
	3. GREEK FORM AND CONTENT
	3.1 Narrative and Plot in Greek Literature
	3.2 Character and the Influence of Homer

	4. STAGES OF GREEK LITERARY DEVELOPMENT
	4.1 The Greek Early Period: Sisyphean stasis
	4.2 The Middle Period: Sophoclean Narrative
	4.3 The Late Period – Euripidean Reality

	5. CONCLUSION
	6. REFERENCES

	futureplay2008_submission_31.pdf
	Introduction
	The Modeling Approach
	Intra-object Modeling
	Inter-object Modeling
	Visualization at Design Time
	Visualization at Run Time

	A Team Training Game-Model
	Elements of the Game-Model
	Agent Behavior in Statecharts
	Training Tasks in LSCs
	The Animated Front-End
	Design Time Analysis
	The Game-Model at Run Time

	Biological Modeling
	Implementation
	The Central Routing Server
	The State-Based Specification
	The Scenario-Based Specification
	The 3D Animated Front-End
	Scenario Inter-dependency Visualization
	The Architecture at Run-Time

	Related Work
	Discussion
	References

	futureplay2008_submission_9.pdf
	1. INTRODUCTION
	2. THE GREEK WORLD VIEW
	3. GREEK FORM AND CONTENT
	3.1 Narrative and Plot in Greek Literature
	3.2 Character and the Influence of Homer

	4. STAGES OF GREEK LITERARY DEVELOPMENT
	4.1 The Greek Early Period: Sisyphean stasis
	4.2 The Middle Period: Sophoclean Narrative
	4.3 The Late Period – Euripidean Reality

	5. CONCLUSION
	6. REFERENCES

	futureplay2008_submission_31.pdf
	Introduction
	The Modeling Approach
	Intra-object Modeling
	Inter-object Modeling
	Visualization at Design Time
	Visualization at Run Time

	A Team Training Game-Model
	Elements of the Game-Model
	Agent Behavior in Statecharts
	Training Tasks in LSCs
	The Animated Front-End
	Design Time Analysis
	The Game-Model at Run Time

	Biological Modeling
	Implementation
	The Central Routing Server
	The State-Based Specification
	The Scenario-Based Specification
	The 3D Animated Front-End
	Scenario Inter-dependency Visualization
	The Architecture at Run-Time

	Related Work
	Discussion
	References

	futureplay2008_submission_20.pdf
	INTRODUCTION
	Related Work
	Comparision of current AR games
	Interference
	Game play
	Evaluation

	Analysis
	Discussion
	Conclusion
	Acknowledgments
	REFERENCES

	shortPapers.pdf
	Introduction
	Motivation
	State of the art
	Requirements
	Simulation model
	Representation of traffic networks
	Traffic participant agents
	Mechanical features
	Human character

	Preliminary and future work

	Acknowledgments

	References

	futureplay2008_submission_54.pdf
	INTRODUCTION
	HYDRAULIC PLATFORM
	Control and Evaluation of Sensory Data of the Steering Angle Performance Parameters

	IMMERSIVE VISUALIZATION ENVIRONMENT (VE)
	Hardware Components
	Simulation Software
	Bicycle Model
	Controlling the Motion Platform
	Perspective-correct Rendering
	Object Controllers
	Implementation

	Software Traffic Agents

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

