Director3D Camera Control System for Unreal Tournament 2004

Cameron Aubuchon

caubuchon@gatech.edu

ABSTRACT
Current tools for machinima making are difficult to use and not easily extendable into real time multiplayer environments. Director3D is a camera control system for multiplayer environments that allows for intuitive camera control with a touch screen interface running on a tablet pc.

Keywords
Machinima, Unreal Tournament, Camera Control, Game Cameras, Multiplayer.

1. INTRODUCTION

Advances in 3D technology have created an opportunity for people to create digital performances using relatively cheap software. Using only a purchased copy of Unreal Tournament 2004, a group of people can record their own 3D film. However, tools that currently exist to facilitate the creation of these digital pieces are difficult to use and have a very high learning curve. Researchers in this field are trying to solve this usability problem as well as making these 3D environments better suited for digital performances.

1.1 Prior Work

Most of the prior research in the field of digital performances has focused on AI camera control techniques. Most notably, Elson and Riedl [1] developed a system that takes a scripted scene and figures out what cameras to use in order to shoot it using AI and predefined approaches to filmmaking. Another AI based camera architecture is presented by Arnav Jhala [2], who uses planning in conjunction with narrative creation to create appropriate camera angles for the story that is being told. Both of these works bring an interesting perspective to the field of camera control, but do not have practical application to end users.

Our research is looking to improve the user experience by providing them with tools that allow them to easily and intuitively control in world cameras. By giving them control over where the camera is in the environment, we can allow them to create television quality pieces in a 3D environment for a low cost.

2. DIRECTOR 3D

In order to address these shortcomings that currently exist in the field of machinima production, we have created the Director3D system. This system presents itself as an easy to use tool that will allow groups to create their own machinima pieces that feature professional looking camera work, something that is difficult to do in a multiplayer environment with the current toolset available to the community. The specific implementation of the system is lightweight and simple, and can be run on any type of hardware. It requires four specific components, a server that will host an Unreal Tournament 2004 game, a pc running the Director3D interface, a camera operator running Unreal Tournament, and the actors that are connected to the server from their own pc running Unreal Tournament. The actual implementation of the Director3D system is described in the following sections.

2.1 The Server

The server can be any pc capable of running Unreal Tournament 2004. The Director3D code is written entirely in Unreal Script, and as a result could theoretically run on a Macintosh environment; however this capability has not been tested. The server code is broken into three separate components, the game type, the playercontroller, and the tcp link. The game type is a custom defined game that is started by the server. This custom game type is needed because the Unreal Server needs to know to use the Director3D player controller in order to allow for the system to control the camera operator player. This game type is selected from the Unreal menu when the server is started, and shows up in the list of game types available when the ‘Host Game’ option is selected. No special configuration is needed to use the game type, everything is configured automatically.

[image: image1.jpg]I

Network

N

rector Camera
(tablet pc) Operator

Actors

Figure 1. The Director3D architecture.

The TCPLink portion of the program is the piece of code that allows the server to talk to the Director3D interface that keeps track of the user defined cameras. The interface receives TCP messages from the server when the camera operator defines a new camera, and sends messages to the server when a camera is selected from the interface. This link sends messages that consist of three parts, an operator, which is either ‘newcamera,’ ‘setcamera,’ or ‘movecamera,’ and two vectors, the first one denoting the players position and a second vector representing the player’s rotation. These messages are then parsed in Unreal by the TCPLink code and the correct operation is performed by the third piece of code, the playercontroller.

The playercontroller does exactly what the name would suggest, it is a collection of functions that control the camera operator character. The basic function of the controller is to send and receive TCP messages based on the input of either the camera operator user or the director. Depending on what the actions of the user are, the playercontroller either sends a message to the director or sets the player location and rotation to the camera position specified by the director.

These three portions of code make up the entire server system and allow for complete control of the camera operator player character within the real time multiplayer environment.

2.2 The Director3D Interface

The Director3D interface is a top down view of an Unreal Tournament level that is used to keep track of and manipulate the location of the in game cameras set by the camera operator. The three main actions that are available to the director through the Director3D interface are the ability to move cameras, rotate cameras, and cut to cameras. These capabilities will be described in the context of using a tablet pc to run the user interface, however, traditional desktop with mouse works in a similar way.

[image: image2.jpg]TR A AT

MM ST
oo b it i koo G Lo

7 T AR Y R .

-y’ % PR

P TR TR O RN Y A
(S ——— wmmﬁm&g

('W -

O T

Figure 2. The Director3D interface running on
a tablet PC.

Moving cameras is an operation that is as simple as tapping the camera you want to move, and dragging the stylus to the camera’s new location. If the camera that is being dragged is the camera that is currently active in Unreal, the camera position is updated in the camera operator’s view in real time as the camera is being dragged.

Rotating cameras works in the same way, except for the button on the side of the stylus is held down while the stylus is being dragged. This is the functional equivalent of right clicking and dragging a mouse on a traditional pc. Again, if the camera whose rotation is being changed is the active in Unreal, the camera’s rotation will be updated in real time as it is being updated on the Director3D interface.

Cutting to different cameras is the simplest action that can be performed in the system, requiring simply a tap of the stylus or a left mouse click. The camera that is selected will change colors to indicate that it is now the current view of the camera operator player.

2.3 The Camera Operator

The camera operator is an Unreal Client in the multiplayer game that has the capability to talk to the director interface running on the tablet pc. The job of the camera operator is to work with the director to set up the specific camera shots the director asks for, send the shot to the director so he can manipulate it, and to record the actual performance through the view on his screen. When the tablet pc is used to select a new camera, this cut physically takes place by changing the view of the camera operator player to the location and rotation values of the new camera.

Technically speaking, from an Unreal standpoint, the camera operator is a spectator within the multiplayer game. A player becomes the camera operator based on the order of players joining the game, the first person to connect to the multiplayer game after the Director3D tablet interface is started will be the player that has the TCP connection to the interface and as a result the ability to interact with the director.

The actual recording of the performance through the view of the camera operator needs to be accomplished through a third party program, such as Frapps. These programs simply capture the DirectX feed output by Unreal Tournament and encodes it into a video file.

2.4 Actors

Because Director3D runs in a real time multiplayer environment, actors from all over the world can connect to the server and participate in the filming of a piece. The number of players that can be in the space is limited only by the constraints of the Unreal Tournament engine. These actors interact with the world exactly as the would in a normal game, and in fact on their end the only difference between a Diector3D game and a regular Unreal game is the absence of the heads up display.

Installation on the clients is as simple as copying three files into the System directory of Unreal. These files are the compiled code taken from the server and contain the custom game type needed in order to connect to the server and join the Direct3D game.

3. APPLICATIONS

3.1 Virtual Performances

The intended application of the Director3D system is to facilitate the production of live performances in 3D environments. These performances are currently difficult to produce because there is a lack of tools that allow for easy camera control in a real time environment. Director3D looks to allow people without coding skills or a background in using the difficult tools provided by the Unreal engine to have full camera control capabilities that are both functional and easy to use. Through the tablet pc interface we were able to create something that is very intuitive to even the most inexperienced user. Simply tapping on a camera activates it in the camera controller’s view, and dragging cameras to move them around is a very easy task to do.

A simple performance that could be created with this tool is a virtual talk show. There is a desk with a host, and a chair with a desk, and the top down view of the stage shown on the tablet pc indicates the location of both of these objects. Before the performance starts, the camera operator adds cameras that can be used to get all of the standard shots the director will want to use in the performance, a two shot of the characters, close ups of each character, etc. Then, as the talk show taking place, the director has an easy interface to select cameras in real time in order to shoot the piece. If one of the characters gets up and walks to a different part of the stage, the director can easily drag one of his cameras to that spot and get the shot he needs.

3.2 Game Play Recording

Although this system was designed with virtual performances in mind, it could also easily be used to record game play and create something that looks like a television broadcast of the multiplayer game session. While this is entirely feasible, there is a tool included in the Unreal engine called UnrealTV that allows for more advanced camera control based around action game play instead of performance.

4. Future Research

Future work that can be done in order to extend the Director3D project falls into two domains, increasing camera control and adding character data.

Increasing camera control is something that can be done within the system in order to better enable the director to get the shots that he wants. In the current implementation the only two aspects of the camera that can be controlled from the tablet interface are the camera’s location and rotation. Further work could be done to allow for the director to change the camera’s height, allow for tilting on a the vertical access, change of focus, zooming, or other methods of manipulating camera angles. Other useful camera control features would be the ability for the director to add cameras without the interaction of the camera operator, and finally the ability for the director to delete cameras that are in the scene. These are all features that would not be difficult to implement but were not included in the system for the sake of simplicity and the limited time that was available to complete the project.

The second area of research that this system could be extended to is the ability to track characters in the environment and generate cameras based on their position. This is very much related to the Shotbox project that is currently being worked on by the DWIG group and Evan Mandel. This project uses an entirely character based camera control system, with cameras being defined relative to character positioning. This system could be integrated with Director3D in order to create a system where the user is able to choose either a space based camera or a character based camera. This type of control would allow for more detailed control of camera angles during performances, and would combine the strengths of both the Shotbox and Director3D systems in order to create a comprehensive camera control tool for digital performances.
5. CONCLUSION

Director3D is an application that fills a hole in previous research caused by prior work’s focus on AI controlled cameras rather than user controlled cameras. Director3D instead focuses on making camera control easy to use for novices seeking to get involved in making digital performances. Through the use of a tablet pc interface we were able to create an easy to use interface that is flexible as well as powerful. The integration of the system into a multiplayer 3D environment encourages collaboration among users who can connect with each other from around the world. Future research in this domain will lead to a comprehensive camera tool that will allow for television quality camera control in a digital environment.

6. REFERENCES

[1] Elson, David K. Riedl, Mark O. (2007). A Lightweight Intelligent Virtual Cinematography System for Machinima Production.

[2] Jhala, Arnav, Young, Michael R. (2005). A Discourse Planning Approach to Cinematic Camera Control for Narratives in Virtual Environments.

PAGE

