The MobMixer


Nick Poirier

Nick.Poirier@gatech.edu



ABSTRACT

The MobMixer is a Java application developed for Google’s Android phone, the T-Mobile G1.  This paper discusses the ideas behind this application as well as the technology. It also covers the steps necessary to set up and work with this application on a given server as well as the technical problems you may experience while using this application.

Keywords

Google, G1, Java, Server, Conductor, Speaker, Android

1. INTRODUCTION

The MobMixer is an application which allows for the download and playback of different tracks of music across multiple phones. It is a new way of creating a musical and social experience which was made possible using current phone technology. It was developed on the T-Mobile G1, a smart phone which runs Google’s Android operating system. The application requires at least two phones (real or emulated) and a steady internet connection for song acquisition and communication with the server, which handles message passing between phones. The program relies on a modest amount of communication across a server as each phone checks a database on the server for new commands from the conductor phone once every second. The master phone can send commands to each of the other phones, instructing them to play or stop a certain sound file. With multiple phones running this application at the same time, the conductor can act as a digital disc jockey in a surround sound environment composed of any number of speaker phones. 

2. SOCIAL PURPOSE

The MobMixer pushes the societal boundaries of the mobile phone. The cell phone is normally thought of as a private device which handles one person’s calls and play’s one person’s ringtones. MobMixer turns each phone into a small part of a communal whole. The MobMixer is a unique type of music creation tool, which could create some very interesting results when applied on a large scale. 

3. APPLICATION WALKTHROUGH
3.1 The Master Phone

The Master phone is chosen when the first phone starts up the application and connects to the server. After the user starts the application, they can choose what track to play while waiting for other phones to connect. When the user presses, “Select Track”, they are taken to a list of the songs available on the server. Upon selecting a song, the phone notifies the server and the user is taken back to the Master phone waiting screen. After the user has decided that enough phones have connected, the user can begin playing the song by pressing, “Begin Playback”. The Master Phone will then display a screen which contains a list of all of the phones connected to the server at that time. When the user selects one of the phones, they are taken to another screen which lists the commands to be sent to the chosen phone. If the phone is currently playing a track, the user can choose to stop it, and vice versa. The list of possible tracks is populated based on the number of tracks available to the selected song. The Master phone can continue on playing and stopping tracks on each phone for as long as they choose to as each song plays in a loop.

3.2 The Speaker Phone

Every phone that connects to the server after the master phone becomes a speaker phone. When a speaker phone connects, it checks the server to find the song selected by the master phone. It then downloads all of the sound files associated with this song using information passed from the master phone. The phone then begins checking every second for new commands from the master phone. When a command is sent, the speaker phone executes that action. Commands are composed of three parts, the order, either play or stop, the track to play, and the time when the song began playing. This allows the speaker phone to sync up its playback with that of other phones by beginning playback the appropriate point in the song. The playback phone then continues to check the server for new commands once a second until the application is closed.
4. SETTING UP THE MOBMIXER
To set up MobMixer, you need Google’s Android  programming tools, found at http://developer.android.com/index.html. You also need a server capable of running PHP. MobMixer was programmed in Eclipse, and you can load the whole project back into Eclipse from the files located in the MobMixer folder located on the project CD. This will allow you to edit the source code and change the URL location of the sound and PHP files to your new server space. On the server side, you will need to place the files located in the MobMixer-Server folder, which is also on the project CD. Within that folder, you will find another folder labeled “Sounds Files” which contains all of the song tracks currently listed in the song database.
4.1 Adding Songs

The song database contains an xml-formatted description of each song and its associated sound tracks. The format is as such:
<SongList>
<Song>

<Title>Song Title Here</Title>
<TrackCount>(Number of Tracks</TrackCount>
</Song>
</SongList>

In order for MobMixer to then download the appropriate song tracks, you must place the tracks in a folder which has the same name as the song’s title within the “Sound Files” folder on the server. Each track in the new folder must then be named in this format: Title_TrackNumber.mp3. So, a typical track file path might be: root\SoundFiles\Orchestra1\ Orchestra1_4.mp3.
Known Issues: If the URL path to a track contains a space, it causes an error in the program and does not download the file. This is easily avoided by making sure not to put a space in the URL path.

Each sound file must be an mp3. Mp3’s are small and capable of progressive streaming (being able to being playing while they are downloading) which makes them ideal for mobile applications.

4.2 The Phone Database

The file “PhoneTable.txt” in the main server folder contains a list of all of the hones connected to the server. The first phone in that list will always be labeled “Master” since the master phone is first to connect. The phone database is also xml formatted and each phone entry looks similar to this.
<Phone>


<ID>200145da5558483a</ID>

<Command>PLAY_1_12800022332</Command>


<Volume></Volume>

</Phone>

The Id of the Master Phone will always be labeled “MASTER” and the master phone entry stores the instructions for what song the speaker phones should download in this format: 

<Command>SongTitle_NumberOfTracks</Command>

As mentioned before, the song title is also the name of the folder containing the individual tracks of a song.

In each speaker phone’s entry, the ID stored is generated using the unique identifier located under System.ANDROID_ID.  The command entry is edited when the Master phone sends a new command using the phone’s unique ID to single it out. The format of each command is:
<Command>(PLAY or STOP)_TrackNumber_(UTC Time in milliseconds of song start)</Command>
For more on how this is generated, see the source code in MasterList.java. The volume category is currently arbitrary and is only in place for future iterations which might allow for the master phone to control the volume of each speaker phone.
Known Issues: 

If the Master phone does not pick a track before other phones connect, the connecting phones will not know what to download and will crash.

Each phone must be connected over WiFi, not cellular internet. It may be possible to allow for cellular internet by editing the permissions in the application’s Android Manifest.
In the current version of this application, the phone database does not clear automatically when a conductor phone disconnects. You must clear the database manually before running the application again for a new conductor phone to be created.
5. FUTURE WORK
Additional work on this project could be focused on any number of areas. 
Location Based Playback:
Using the G1’s GPS technology, it may be possible to narrow down phones in a performance to those within a certain range of the master phone. The master could also be allowed to see the position of each phone when deciding which tracks to send where.
UI Improvements:
The simple, list-based UI of present could be improved upon by incorporating Location and direction into the application. One UI idea which was discussed was having the master phone send tracks to a phone by sliding tracks towards or away from each phone in a virtual top-down space. Distance of a track might determine volume, or whether the phone even plays that track at all. When combined with location sensing, the phone could create an actual spatial representation of the phones in the room.
Using The Accelerometer:
A more ambitious project might involve using the accelerometer in the G1 to allow the conductor phone to actually affect sound play back in some by waving their arms back and forth in the manner of an orchestra conductor. Or, the phone could be spun like a disc jockey’s turn table to pause a song, or modify playback in another way.
6. CONTACT

For any more questions regarding the set up and running of MobMixer, you can contact me at the e-mail address listed at the top of this paper or at Nick.M.Poirier@gmail.com. I will be more than happy to assist.






