PuppetMan

Martin Rojas

|Abstract

Currently machinima tool development has
been focused on camera and scene controls. These
tools are very important, but have created a void in
tools for the control of the performing characters in
machinima pieces.

e enBodied Digital Creativity DWIG, Michael
Nitsche, Alie Mazalek, Tandav Krishna

| Design/ Constraints

|Introduction

The inspiration of the project was a mixture
of wanting to create more expressive machinima and
being able to share actions. After trying to build a
machinima performance, it was clear that there was
a lack of control in the quality and type of movement
that the characters were able to perform.

The lack of expressiveness in the characters
hampered the quality of the performance and the
potential for complex performances. This block on
complex performance has the potential to hamper
the growth of machinima as a serious competitor to
pre-rendered animation. It was due to this void that
the idea of the creation of a tool that would solve
this problem emerged.

|Previous / Related Research

Good documentation on machinima is a bit
sparse. Even though the concept has been forming
since the first 3D game, but it has not been until
recently that the quality of the games have made it
possible for legitimate arguments to be made to the
possibilities of replacing old style pre-rendered
animation.

Some of the previous research that has address
control of dame characters in a more details level.

e Puppet Show DWIG, Michael Nitsche, Devon
Hunt, Alex West
e TUI3D, DWIG, Michael Nitsche, Alie Mazalek

The first iteration of the tool was for
creating an environment that would allow a bridge
to connect game controller to the bones in the
Unreal Characters so that smoother motions could
be performed by the characters. When creating this
tool the problem of not being able to control more
than a couple of bones at a time were cause for
rethinking the capabilities of the tool.

In order to solve the problem about the
inability to control more than one bone the idea of
recording the input for each bone appeared. The next
stage was to create a recording capability which
focused on saving the input from the controller and
allowing for a progressive generation of the
performance. Through this iteration the problem of
creating an efficient storage structure capable of
reading, writing and changing close to 100 values
per second was very difficult.

After a comprehensive architecture was
created for handling the data stream, allowed for the
next challenge in the creation of the tool. The need
for a clean a simple user interface was necessary
since the tool would run on the background or next
to the puppet and not have the full attention of the
user. While easy enough to provide the data on the
current status of the tool at a simple glance from the
user, it was this potential lack of disability that
prompted the last feature of the tool.

A feature which focuses on mapping all of
the inputs needed to handle the tool from the Xbox
controller.



Technologies

The tool was created on the .NET framework and
written in C#. The reasoning for the use of this
language rather than Java was that the .NET
framework uses a lot of libraries that are standard
on almost all windows machines. These libraries
include the xbox controller and the correct udp server
to send the information to Unreal tournament. The
last reason for choosing that language is that the
language is part of an environment that is constantly
improving and keeping with times and not likely that
it will disappear in the recent future rendering the
tool useless.

Second the tool connects to the Unreal Tournament
2004 mod Movie Sandbox. In this mod a character
had to be created with the right bones in mind in
order to set all of the movements for the character.

Final Prototype

The final prototype of the system adhered
to the parameters set in the design process of the
tool. While there may still be some bugs in the
system and not as versatile as previously expected.
Although the system was designed from the
beginning to be adept to change and very flexible in
its implementation. This was a priority and is true in
its final inception since all of the parameters need to
be changed in a few places and cause for the entire
program to be able to adapt to new parameters.

| Conclusion

The puppetMan tool has achieved most of
the goals that were set in its design process. Yet the
result was not as elegant as expected since there
were some restrictions placed on program by the
Unreal Engine. These restrictions that caused for a
reconstruction of the tool changed some of the
original ideas of interoperability in the simple form of
the tool. The possibility of interoperability is still
present in the tool since the entire save and load
functions still work.

It is clear that puppetMan is a first step into
a tool that will open up the possibilities to a new field
in film and expression.



	Abstract
	Introduction
	Previous / Related Research
	 Design/ Constraints
	Technologies
	Final Prototype 
	Conclusion 

